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Abstract MERA (Maximum Entropy Ramachandran

map Analysis from NMR data) is a new webserver that

generates residue-by-residue Ramachandran map distribu-

tions for disordered proteins or disordered regions in pro-

teins on the basis of experimental NMR parameters. As

input data, the program currently utilizes up to 12 different

parameters. These include three different types of short-

range NOEs, three types of backbone chemical shifts (15N,
13Ca, and 13C0), six types of J couplings (3JHNHa, 3JC0C0,
3JC0Ha, 1JHaCa, 2JCaN and 1JCaN), as well as the 15N-relax-

ation derived J(0) spectral density. The Ramachandran map

distributions are reported in terms of populations of their

15� 9 15� voxels, and an adjustable maximum entropy

weight factor is available to ensure that the obtained dis-

tributions will not deviate more from a newly derived coil

library distribution than required to account for the

experimental data. MERA output includes the agreement

between each input parameter and its distribution-derived

value. As an application, we demonstrate performance of

the program for several residues in the intrinsically disor-

dered protein a-synuclein, as well as for several static and

dynamic residues in the folded protein GB3.

Keywords Coil library � IDP � Karplus curve � Random

coil � Short-range NOE � a-Synuclein

Introduction

It is estimated that more than 30 % of the mammalian

genome codes for intrinsically disordered proteins (IDPs)

or proteins with large intrinsically disordered regions

(IDRs) (Dyson and Wright 2005; Sickmeier et al. 2007;

Uversky and Dunker 2010; van der Lee et al. 2014).

Inherently, such proteins are poorly suited for detailed

structural analysis by X-ray crystallography, but the

intrinsic conformational propensities of the disordered

backbone are amenable to solution state NMR studies

(Dyson and Wright 2004; Shi et al. 2006; Mittag and

Forman-Kay 2007; Mittag et al. 2010; Ball et al. 2011;

Rezaei-Ghaleh et al. 2012). Such NMR studies build on

extensive prior work that analyzed backbone torsion angle

propensities in synthetic peptides, and their analysis in

terms of 1H-1H NOE data, chemical shifts, as well as

homo- and heteronuclear J couplings (Dyson and Wright

1991; Smith et al. 1996; Long and Tycko 1998; Baldwin

and Rose 1999; Graf et al. 2007; Hagarman et al. 2010).

With long-range NOEs, corresponding to close contacts

between residues that are not proximate in the amino acid

sequence, usually being unobservable in such proteins, the

non-local distance restraint information is often limited to

paramagnetic relaxation effects (Bertoncini et al. 2007)

and/or small angle X-ray scattering data (Bernado et al.

2007), both of which can be challenging to interpret in

quantitative structural terms. Nevertheless, innovative

approaches have been introduced to provide a pictorial

representation of the structure of IDPs or IDRs in terms of

ensemble representations (Varadi et al. 2014). Among
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these methods, the ENSEMBLE program (Krzeminski

et al. 2013) and the ASTEROIDS program (Salmon et al.

2010), which select suitable subsets of models from much

larger ensembles, have become quite widely used. How-

ever, with few if any of the experimental parameters

reporting on the correlation between the backbone torsion

angles sampled at any given point in time by distant resi-

dues i and j, the a priori size of the conformational

ensemble grows exponentially with the number N of resi-

dues. Even under the tight restriction of allowing only three

dominant conformers per residue, a candidate ensemble

would contain 3N conformers overall in a crude represen-

tation of the space sampled by the protein. Clearly, the

number of experimental parameters is vanishingly small

compared to the number of possible conformers whose

populations need to be defined by the data, making this a

hugely under determined problem.

Instead, we here simply focus on deriving the distribu-

tions of the backbone //w angles of individual residues on

the basis of the strictly local NMR parameters, i.e., back-

bone chemical shifts, J couplings, and intra-residue and

sequential NOE data. For this purpose, we divide the

360� 9 360� Ramachandran space into 24 9 24 voxels of

15� 9 15� each. As we have shown previously (Mantsyzov

et al. 2014), 10 independent NMR parameters are readily

available for this purpose. Relative to our earlier study

(Mantsyzov et al. 2014), two additional restraints are now

also available. First, 3JC0C0(i - 1, i), which can be mea-

sured at very high precision in IDPs and IDRs, and which

follows a very tight Karplus relation (Li et al. 2015) has

been added as a possible restraint. The Karplus curve for

this coupling is 60� out of phase relative to 3JHNHa, and
3JC0C0 therefore carries independent restraining information

(Lee et al. 2015). The second, newly added and very useful

backbone torsion angle restraint is 3JC0Ha (Wang and Bax

1996). Although its Karplus relation is 180� out of phase

relative to 3JHNHa, its actual Karplus coefficients are very

different and lead to a large ([*6.5 Hz) value for con-

formations with /&?60� values in the aL region, whereas

for the most populated region of negative / values, this

coupling is restricted to a narrow range of *1–3 Hz

(Wang and Bax 1996). This coupling is therefore particu-

larly important for defining the aL population of

Ramachandran space.

Deriving Ramachandran map distributions
from NMR data

The up to 12 parameters per residue mentioned above

clearly remain insufficient for defining the populations of

576 voxels. However, two additional approximations can

be made that permit us to solve this problem. First, we use

the common sense approximation that the distributions

sampled in solution must bear some similarity to that

observed in the non-secondary structure regions of crys-

tallized proteins, i.e. the coil database. Also, depending on

residue type, in this coil database only ca 100–120 of the

15� 9 15� voxels have non-negligible populations (about

double that for Gly residues, which are not considered in

our study). By setting the weights of the remaining ca 460

voxels to zero, we can strongly reduce the number of

adjustable parameters or weights, wk (Rk wk = 1), when

searching for optimal agreement between the calculated

weight-averaged NMR constraints, Icalc(q), for any given

residue in the sequence and the corresponding experi-

mental observables Iexp(q). Here, Iexp(q) is any of the q

(q B 12) types of different NMR parameters, and Icalc(q) is

given by

IcalcðqÞ ¼
XNc

k¼1

wkIkðqÞ ð1Þ

where the summation extends over all Nc voxels that have

non-vanishing populations in the coil database and Ik(q) is

the value calculated for parameter q at the center of

voxel, k.

Development of a random coil structural database

In our earlier work (Mantsyzov et al. 2014), we used the

coil library of Fitzkee et al. (2005), which excluded sec-

ondary-structured regions based on a ‘‘mesostate’’ evalua-

tion. This coil database served as a reference when

calculating the NMR-derived //w distribution, and for

deriving the minimal change relative to this database dis-

tribution needed to satisfy the NMR restraints. Here, we

constructed an updated analogous coil library which

includes fragments that are at least three residues in length

and are not subject to intramolecular backbone–backbone

H-bonding (as defined by an H-bond energy cut-off energy

\-0.7 kcal/mol). As input to this coil library, we used all

X-ray structures solved at a resolution B2.0 Å, with an R

factor lower than 23 %, and a maximum pairwise sequence

identity between coil database proteins of 50 %. A com-

parison of the newly generated coil library with the original

Fitzkee coil library shows a decrease in the population of

backbone torsion angles that are commonly found in

H-bonded tight b turns and small increases in the b and

polyproline-II (PPII) regions of Ramachandran space

(Fig. 1). Excluding the terminal residues of the selected

fragments, the new coil database contains torsion angles for

195,859 residues. The shift in our coil library distribution

relative to the widely used Fitzkee library (Fig. 1) is not

surprising, considering that the Fitzkee library was based

primarily on excluding a-helical and b-sheet residues,
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whereas our library additionally eliminates small structured

elements such as H-bonded turns. As will be shown below,

a smaller deviation from the new coil library generally is

needed to obtain a comparable fit to the experimental NMR

parameters when evaluating a highly disordered protein

such as a-synuclein, suggesting that H-bonded tight turns

in highly disordered proteins have a lower population than

observed in the Fitzkee coil library.

Generation of the combined experimental restraint

function

For each voxel k in the coil library, the J coupling values

applicable for the center of the voxel are calculated using

standard Karplus equations. Considering that the empiri-

cally parameterized Karplus curves already include the

effects of small backbone angle fluctuations (Bruschweiler

and Case 1994), we use Karplus curves for 3JHNHa, 3JC0C0

and 3JC0Ha couplings where the effect of such motions has

been factored out (Lee et al. 2015). A similar adjustment

can be derived for equations that describe the Karplus-like

relations between backbone torsion angles and 1JHaCa,
2JCaN and 1JCaN couplings (Vuister et al. 1993; Ding and

Gronenborn 2004; Wirmer and Schwalbe 2002; Mantsyzov

et al. 2014). However, considering that the rmsd between

observed couplings in folded proteins and their corre-

sponding best-fitted Karplus curves is much larger than the

effect of any dynamics correction to these Karplus-like

equations, no such corrections were made.

Calculating the expected NOE at the center of each

voxel is not entirely straightforward as (//w)-dependent

small deviations from ideal bond angles are often observed

in high resolution X-ray structures (MacArthur and

Thornton 1996). As a result, the intra-residue HN
i -Ha

i

distance does not only depend on /i but also on adjacent

torsion angles, and similarly the Ha
i -HN

iþ1 distance does not

solely depend on wi. In practice, we find that hydrogen

atoms built on to the X-ray structure backbone by the

program MOLMOL (Koradi et al. 1996) yield somewhat

better agreement when evaluating experimental residual

dipolar couplings, which are very sensitive to the correct

placement of H atoms, than other programs that can be

used for this purpose. The representative HN
i -Ha

i , Ha
i -HN

iþ1,

and HN
i -HN

iþ1 distances for voxel k of residue i are then

calculated by averaging the corresponding distances for all

coil database residues in that voxel, using MOLMOL-

added H atoms.

In order to convert the rHH values into NOE cross-re-

laxation rates, we require J(0) spectral density values

derived from reduced spectral density mapping analysis of
15N relaxation data (Farrow et al. 1995), and this approach

was used in our earlier work (Mantsyzov et al. 2014).

Alternatively, as we previously have shown that the

intraresidue HN-Ha NOE correlates tightly with 15N-

derived J(0) values (Mantsyzov et al. 2014), this intrar-

esidue NOE can also be used as an internal reference for

rHa,HN(i - 1, i) and rHNHN(i, i ? 1). This new option, not

used during our previous analysis of a-synuclein, is aimed

at reducing the amount of input data required for MERA.

For this purpose, we use the intraresidue \rHNHa
-6 [-1/6 =

2.91 ± 0.03 Å as an internal reference, where the 2.91-Å

and its standard deviation are derived from the

Ramachandran distributions obtained by MERA for a-

synuclein when using J(0) spectral densities to calculate

the 1H-1H NOEs. Our \rHNHa
-6 [-1/6 = 2.91-Å assumption

could potentially lead to erroneous rHNHa(i, i - 1) and

rHNHN(i, i ? 1) distance restraints if residue i had a

Fig. 1 Backbone torsion angle distributions in the newly generated

coil library, illustrated for A Ala, B Asn, C Tyr, and D Val. The surface

area of each circle is proportional to the population of its 15� 9 15�
voxel, and its color reflects the ratio relative to that the population seen

in the Fitzkee coil library (Fitzkee et al. 2005). Voxels that fall below

the 0.1 % population threshold in the newly generated coil library, but

observed in the Fitzkee coil library are shown with a size that

corresponds to their population in the Fitzkee coil library (green). For

each amino acid type, the favorably and generously allowed u/w
conformational regions are defined as those with a residue density d(/,

w) above thresholds of 1 and 0.1 %, respectively, in the newly

generated coil library. Their boundaries are marked by dark and light

dashed lines, respectively. The normalized residue density, d(/, w), is

derived by convolution of each of the /k/wk coil database entries with a

Gaussian function, exp(-((/ - /k)
2 ? (w - wk)

2))/450), analogous

to previous work (Shen and Bax 2013)
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substantial positive / angle population (where rHNHa(i,

i) & 2.3 Å), and the user is alerted to this possibility when

MERA encounters unusually low ratios for the sequential

to intraresidue NOE intensities, dHaHN (i - 1, i)/dHNHa(i,

i) B *1.5. Substantial positive / angle populations

([20 %) often can also be recognized from below average

(\ 140 Hz) 1JCaHa values, and above average ([3 Hz)
3JC0Ha values.

The 15N, 13Ca and 13C0 chemical shifts for each voxel

k in the coil library are calculated from the sum of the

residue-specific random coil values, corrected for through-

bond nearest neighbor effects (Wang and Jardetzky 2002),

and a //w dependence taken from the empirically param-

eterized program SPARTA (Shen and Bax 2007).

Determining the Ramachandran map distribution sam-

pled by any given residue then is equivalent to assigning

weights, wk (Rk wk = 1), to the voxels such that the sum

over the calculated NMR-parameters optimally matches

the experimental data, i.e., minimizing the normalized v2

function:

v2 ¼ 1

Nq

XNq

q¼1

IcalcðqÞ � IexpðqÞ
� �2

=r2ðqÞ ð2Þ

Here, we assume for simplicity that the Nq different

NMR parameters q are statistically independent. The value

for the uncertainty in any given parameter, r(q), determi-

nes the effective weight of each parameter q and the choice

of their values will be briefly discussed below. For deriving

Icalc(q) from Eq. (1), the value Ik(q) is the value calculated

for the center position of voxel k. Iexp(q) is the experi-

mentally observed value for parameter q, i.e., the J cou-

pling, chemical shift, or 1H-1H cross-relaxation rate.

Analysis of the molecular dynamics trajectory of the 40-

residue N-terminal segment of a-synuclein previously

showed that the J(0) spectral density, dominating the 1H-1H

NOE buildup, is quite anisotropic (Mantsyzov et al. 2014).

Similarly, the dHNHa(i, i) NOE data in a hexapeptide seg-

ment of a-synuclein exhibit the zero-NOE condition

(xHsc * 1.1) at a higher field than the sequential dHaHN

(i - 1, i) NOE, indicative of diffusion anisotropy (Ying

et al. 2014). To a first approximation, the anisotropy of J(0)

applicable for the sequential dHNHa(i, i - 1) NOE in an

IDP can be accounted for by writing (Mantsyzov et al.

2014):

Jð0Þ ¼ Jð0Þexp 1 � 2ke�
180
W½ �2 þ ke�

w�120
W½ �2 þ ke�

wþ240
W½ �2

n o

ð3Þ

Here, and in the following, all angles are in degrees.

J(0)exp is the 15N-derived J(0) value, 1 ? k reflects the

effective spectral density ratio for a Ha
i�1-HN

i vector par-

allel to the chain direction (w & 120�) over that for a Ha
i�1-

HN
i vector that is at the magic angle relative the Ca

i�1-Ca
i

direction, as approximately applies for a-helical residues.

The parameter W defines the steepness at which the

effective J(0) varies with w, and was empirically adjusted

to 90�. The spectral density for dHNHa(i, i) and dHNHN(i,

i ? 1) NOEs, both corresponding to interproton vectors at

large angles relative to the Ca
i�1-Ca

i chain direction, do not

require any scaling relative to J(0)exp because the 15N–1H

dipolar interaction, which dominates 15N relaxation, is also

oriented at a large angle relative to the chain direction. The

anisotropy of the chain dynamics is taken into account by

MERA when calculating the dHNHa(i, i - 1) NOE contri-

bution for each voxel. The exponential pre-factor in Eq. (3)

was empirically adjusted to k = 1, which appears suitable

for IDPs, but possibly could be smaller for IDRs and other

less dynamic systems, and be reduced to zero for a well-

ordered isotropically tumbling protein. The MERA input

file therefore provides the option to adjust this parameter

relative to its default setting of 1.0.

Values of the uncertainty parameters, r(q)

The values of r(q) in Eq. (2) effectively determine the

weight of restraint q in determining the //w distribution.

Their optimal values depend both on the error in the

experimental measurement of parameter q, and on how

accurately Ik(q) can be predicted for voxel k (cf Eq. 1).

Below we discuss our choices of the default r(q) parame-

ters, but note that these are user-adjustable in the MERA

input file.

For the cross relaxation rates, r is determined by how

precisely the NOE buildup rate can be measured, and by

the accuracy of Eq. (3) in accounting for diffusion aniso-

tropy as well as the validity of neglecting the high fre-

quency spectral density terms, J(2xH). The latter were

previously shown to be very small in a-synuclein

(Mantsyzov et al. 2014), but could be significant in smaller

proteins, at lower magnetic fields, or at higher temperatures

than were used for that protein. Empirically, in order to

obtain a comparable contribution to v2 (Eq. 2) as from the

other terms, the error in the cross relaxation rate was set to

15 % of the measured rate plus 15 % of the rate predicted

for the intraresidue dHNHa(i, i) NOE. As a result, the typ-

ically strong sequential dHaHN(i - 1, i) NOE cross relax-

ation rate is assigned a total fractional error of ca 20 %,

dHNHa(i, i) is assigned an error of ca 30 %, and the frac-

tional error for the typically weak dHNHN(i, i ? 1) NOE

will be larger since it will be dominated by the 15 %

fraction of the intraresidue dHNHa(i, i) NOE.

For chemical shifts, barring wrong assignments or

erroneous spectral reference calibration, r(q) is completely

dominated by the accuracy at which chemical shifts can be
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predicted. For a known set of //w angles in folded proteins,

the prediction errors typically are ca 1 ppm for 13C and

2–2.5 ppm for 15N (Han et al. 2011). These relatively large

uncertainties reflect small deviations from idealized

geometry, variations in H-bond lengths and geometry,

sidechain torsion angles, ring current effects, etc., which

can increase or decrease the chemical shift relative to the

value predicted on the basis of only / and w (Shen and Bax

2010). In an IDP, such as a-synuclein, measured chemical

shift values cluster very tightly around their random coil

values (Maltsev et al. 2012). For example, excluding

residues preceding Pro and the C-terminal residue, its 17

Ala 13Ca have a standard deviation of only 0.2 ppm relative

to their averaged value (52.6 ppm). Comparably small

standard deviations for other residues as well as the 13C0

nuclei indicate that the effects of the parameters other than

/ and w have a much smaller net impact on chemical shift

values than they do in folded proteins, and a r(q) value

much smaller than in folded proteins can be used (Table 1).

For the J coupling parameters, an appropriate

r(q) choice must reflect both the uncertainty in their

measurement and how tightly they correlate with the

backbone torsion angles in proteins of known structure. In

folded proteins, the scatter between best-fitted and mea-

sured 1JCaHa values equals *1.6 Hz (Vuister et al. 1993),

and large rmsd’s (*0.6 Hz) are also obtained for 3JHNHa

when ignoring the out-of-plane position of the amide pro-

ton, which in favorable cases can be measured by RDCs

(Maltsev et al. 2014). Similarly, rmsd values between

observed and predicted 1JNCa or 2JNCa in folded proteins

(*0.6 Hz) are dominated by prediction errors, resulting

from factors other than the backbone torsion angles. For

each of these parameters, much tighter clustering around

random coil values is again observed in a-synuclein

(standard deviations of ca 0.5 Hz for 1JCaHa, 0.2 Hz for
1JNCa or 2JNCa) indicating that the impact of factors other

than backbone torsion angles again is much smaller in an

IDP than in folded proteins.

The above considerations suggest that the values of

r(q) depend on the type of protein studied, requiring very

low values for highly disordered proteins such as a-synu-

clein, but considerably higher values in partially ordered

systems that may include significant populations of stable,

H-bonded conformers. In our work, we approximately

scale the value of r(q) for a given residue by the value of

its chemical shift order parameter, RCI-S2 (Berjanskii and

Wishart 2005) as calculated by the program TALOS-N

(Shen and Bax 2013), which ranges from a typical value of

*0.3 in IDPs to C0.7 in short loops in folded proteins.

Typical r(q) values used in our work are listed in Table 1,

but users may adjust these parameters to accurately reflect

the degree of flexibility applicable for the residues studied

and the errors in the experimental data. As these r(q) val-

ues are global parameters, applicable for all residues in the

input file, a user may choose to generate separate input files

for residues in highly flexible regions of a protein and in

(partially) ordered segments. We note, however, that the

final Ramachandran distribution reached by MERA is rel-

atively insensitive to r(q) values and mostly impacts the

value of v2. Values of r(q) impact the relative importance

of the entropy term, discussed below, used to regularize the

minimization of Eq. (2).

Inclusion of a maximum entropy term

in the restraint function

With only a dozen or less experimental parameters avail-

able to define the populations of over 100 voxels in

Ramachandran space, this problem is inherently underde-

termined. However, a further reduction can be achieved by

using the common sense approximation that the distribu-

tions sampled in solution must bear some similarity to

Table 1 Values of

r(q) recommended for MERA

use

Parameter IDP (RCI-S2 & 0.3) (Partially) ordered (RCI-S2 C 0.7)

d(13Ca)/ppm 0.25 1.0

d(13C0)/ppm 0.25 1.0

d(15N)/ppm 0.8 2.5
3JHNHa/Hz 0.20 0.6
3JC0C0/Hz 0.08 0.12
3JC0Ha/Hz 0.1 0.25
1JCaHa/Hz 0.4 1.6
1JNCa/Hz 0.2 0.6
2JNCa/Hz 0.2 0.6

NOE/% 15 ? 15a 15 ? 15a

a The error in the cross relaxation rate is calculated as % of the rate provided plus % of the rate expected

for a 2.91-Å dHNHa(i, i) interaction
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those observed in the non-secondary structure regions of

crystallized proteins, i.e. to the coil database. Therefore, we

previously introduced an additional, maximum entropy

term (Rozycki et al. 2011) that essentially aims to mini-

mize the deviation from coil library voxel populations:

S ¼ �
XNc

k¼1

wkln
wk

w
ð0Þ
k

ð4Þ

where wk
(0) corresponds to the fractional population of

voxel k in the coil library (Mantsyzov et al. 2014). The

effective energy function that is minimized by MERA then

is given by:

G ¼ v2 � hS; ð5Þ

where the parameter h controls the importance of the

entropy term relative to that of the experimental data. It is

worth noting that the term -S of Eq. (4) is equivalent to

the Kullback–Leibler information divergence between the

MERA-derived Ramachandran map distribution and that of

the coil database (Kullback and Leibler 1951).

If the weight, h, of the entropy term is set to zero, the

minimization procedure may not be able to converge on a

unique set of wk values, even though reaching low v2

values. As demonstrated previously (Mantsyzov et al.

2014), it then becomes useful to plot the obtained v2 as a

function of h, where h usually is changed in steps of a

factor 2. Plotting v2 as a function of h, or as a function of S,

then typically will show an ‘‘elbow’’ upturn in v2 and the h
value just prior to this upturn (typically in the 0.4–2 range)

is chosen for all further data analysis, i.e., as the set of

values that most closely resembles the coil database with-

out significantly sacrificing the agreement with the exper-

imental restraints.

Minimization of the free energy function

Minimization of the ‘‘free energy’’ function, Eq. (5), is

accomplished by simulated annealing, followed by Powell

minimization. The algorithm searches for the set of voxel

populations, wk, that corresponds to the minimum value of

G. Minimization starts from a set of wk with uniform val-

ues. Optionally, for faster convergence the program can be

started from the coil database populations, or to test

robustness an option to start from random initial popula-

tions exists. The latter option invariably results in essen-

tially indistinguishable differences relative to starting from

a uniform distribution, but requires more iterations during

the simulated annealing stages of the minimization. In each

round of simulated annealing, perturbations Dxk are added

to each wk in the set. Perturbation Dxk is randomly gener-

ated within defined boundaries and scaled using the tem-

perature parameter, T. The temperature is gradually

decreased in successive steps of the minimization, thus

decreasing the perturbation, and the algorithm narrows the

sampling of points around the minimum found at the pre-

vious step. The method applies the Metropolis criterion for

accepting a new state generated: the state is accepted if the

new value of the function G is smaller than that from the

previous step (DG\ 0); if DG C 0, the probability of

acceptance of the perturbed state depends on a Boltzmann

weight, e(DG/kT), where k is the Boltzmann constant, but in

practice adjusted to a constant value compatible with the

typical values encountered for DG. The simulated anneal-

ing method yields efficient sampling of the energy function

landscape and gradually pushes the system towards its

global minimum.

Our implementation of the simulated annealing protocol

includes 3 separate cooling phases. Phase 1 uses a very fast

annealing schedule and 100 steps of minimization, with the

perturbation Dxk,i for the k-th voxel at the i-th step of mini-

mization and the evolution of the temperature parameter T

defined as (Ingber 1989):

Dxk;i ¼ sgn u�1 =2

� �
Ti 1 þ 1=Tið Þj2u�1j� 1
h i

ð6Þ

where Ti = To e
(-i/2.71), i is the number of the temperature

step, To is the initial temperature, and u is a random value

generated from the uniform distribution in the range [0, 1].

Populations wk,i for all voxels are updated simultaneously

using the relation wk,i = |wk,i-1 ? Dxk,i|. New populations

are normalized according to wk,i_norm = wk,i/Rk |wk,i|. Pha-

ses 2 and 3 consist of 500 and 2000 steps each and both use

the slow cooling schedule (Szu and Hartley 1987) given

by:

Dxk;i ¼ l tanðvk;iÞ= Rk tan vk;i
� ��� �� 1 þ ið Þ

� �
ð7Þ

where vk,i is a random value generated from a uniform

distribution in the range [-p/2, ?p/2] for each voxel and

l is the learning rate (l = 1 for phase 2; l = 0.5 for phase

3). Populations are updated and normalized as in phase 1.

The two-fold decrease of the learning rate in phase 3 yields

better sampling of points close to the local minimum found

at the previous iteration, while phase 2 offers wider sam-

pling. In order to sample the energy landscape efficiently,

calculations of perturbations Dxi are repeated 20 times at

each temperature step in all phases.

Although the simulated annealing approach is robust for

finding an approximate global minimum of the empirical

energy function, it is quite inefficient for reaching the

actual minimum of this function. Therefore, after the third

phase of simulated annealing has been completed, MERA

carries out a Powell minimization to converge to the lowest

value in the vicinity of the solution found by the three-stage

simulated annealing procedure.
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The program has been written in C?? and can be

downloaded from http://spin.niddk.nih.gov/bax/software/

MERA. The program also runs as a webserver, http://spin.

niddk.nih.gov/bax/nmrserver/mera, where the user is asked

to upload a file with experimentally determined input data,

including the estimated uncertainties, and the program

emails the results back to the user. The program will run

with any number of input parameters, but will return ill-

defined results if too few restraints are available, as

reflected in large standard deviations on the Kullback–

Leibler divergence and near-zero v2 values.

Results and discussion

Although MERA is designed for the analysis of the back-

bone torsion angle distribution of IDPs or of highly flexible

regions in a protein, it can also be applied to folded pro-

teins, and potentially is particularly useful for viewing the

conformational space sampled by flexible regions in such

proteins. Below, we will demonstrate the program for such

applications, as well as for several residues in the previ-

ously extensively studied IDP a-synuclein.

Application to ordered and dynamic residues

in protein GB3

Nearly complete input data are available for the small,

globular protein GB3. This protein contains a Greek key

motif b-sheet, with one long a-helix (A23-N37) separating

strands b2 and b3 (Derrick and Wigley 1994). The amide

groups of several of GB3’s residues, incl. L12 and G41,

exhibit strongly elevated backbone dynamics as judged

from 15N NMR relaxation (Hall and Fushman 2003) and

RDC analyses (Yao et al. 2008). Here, we show the results

of MERA analysis for L12 and D40, as well as for two

well-structured residues, K4, located in the first b-strand,

and K31 in the middle of GB3’s a-helix.

As expected, for both the highly structured residues, K4

and K31, a good fit to the experimental input parameters

corresponds to quite high values ([*1) of the Kullback–

Leibler divergence, S. When increasing the weight of the

Fig. 2 Examples of MERA-derived //w distributions for well-

ordered residues K4 (A, C) and K31 (B, D), using experimental

input data (A, B), and ideal simulated input data (C, D), with the

corresponding reference backbone torsion angles (PDB entry 2OED)

(Ulmer et al. 2003) marked ‘‘9’’. The surface area of each circle is

proportional to its voxel population, and the color of each circle

reflects its fractional deviation from that seen in the coil database. The

bottom panels show plots of v2 as a function of S, obtained for values

of h of (from left to right) 0, 0.1, 0.2, 0.4, 0.8, 1.6, 3, 6, 10, 20, and 40.

The horizontal error bars in the lower panels reflect the lack of

convergence of the simulated annealing protocol, seen for very low h

values. The value h = 0.4 is used for deriving the populations in the

upper panels. For all analyses, the diffusion anisotropy parameter, k,

was set to zero and r(q) values recommended for folded proteins in

Table 1 were used. v2 values when using the database distributions

(S = 0) are 7.2 (K4) and 10.8 (K31). Green boxes mark secondary

structure regions: b, PPII, aL, type I b-turn (b-I) and aR (see green

labels in A). Experimental input data for K4 and K31 include all six

types of J couplings (3JHNHa, 3JC0C0, 3JC0Ha, 1JCaHa, 2JNCa and 1JNCa),

three types of chemical shifts (15N, 13Ca, and 13C0), and three types of

short-range 1H-1H NOEs
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database, h, the v2 value rapidly rises (Fig. 2A, B), con-

firming that the torsion angle backbone distributions

strongly deviate from those seen in the coil library. Indeed

narrow clusters of backbone torsion angles are observed for

both of these residues, centered around the angles of the

PDB X-ray (Derrick and Wigley 1994) and RDC-refined

NMR (Ulmer et al. 2003) structures (Fig. 2A, B). It is

important to realize that MERA searches for the widest

distribution (maximum entropy solution) that is compatible

with the experimental data.

Because the individual chemical shift and J coupling

parameters, to first order, vary linearly with / and w,

values predicted for a narrow cluster of //w angles will be

very close to those calculated for the center of that cluster.

So, even for idealized input parameters, simulated for a

single static conformation, the analysis will return a (rel-

atively narrow) distribution of backbone torsion angles

(Fig. 2C, D).

For L12 and D40, MERA finds distributions of //w
angles compatible with the experimental input data that are

much wider than found above for the highly structured

residues (Fig. 3). Although the amide group of D40 is

relatively well ordered as judged from 15N relaxation (Hall

and Fushman 2003) and RDC analyses (Yao et al. 2008),

the G41 15N–1H was found to be highly dynamic. Results

obtained here for D40 are consistent with this result, as the

distribution shown in Fig. 3B indicates it is primarily its w
angle that varies, thereby impacting the amide of G41.

Application to a-synuclein

Our prior analysis of backbone chemical shifts (Maltsev

et al. 2012) showed that deviations from random coil val-

ues for this protein were even smaller than for the proteins

used to generate the random coil chemical shift database

(Kjaergaard et al. 2011). In other words, this protein is

Fig. 3 Examples of MERA-derived //w distributions for dynami-

cally disordered residues L12 (A) and D40 (B) in GB3. The

corresponding averaged NMR-derived backbone torsion angles

(PDB entry 2OED) (Ulmer et al. 2003) are marked ‘‘9’’. The bottom

panels show plots of v2 as a function of S, obtained for values of h of

(from left to right) 0, 0.1, 0.2, 0.4, 0.8, 1.6, 3, 6, 10, and 20.The h
value of 0.4 is used for deriving the populations shown in the upper

panels. For all analyses, the diffusion anisotropy parameter, k, was set

to zero. v2 values when using the database distributions (S = 0) are

3.4 (L12) and 17.7 (D40). The horizontal error bars in the lower

panels reflect the lack of convergence of the simulated annealing

protocol for very low h values. Experimental input data for L12 and

D40 include all six types of J couplings (3JHNHa, 3JC0C0, 3JC0Ha, 1JCaHa,
2JNCa and 1JNCa), three types of chemical shifts (15N, 13Ca, and 13C0),
and three types of short-range 1H-1H NOEs
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representative of an IDP with very high backbone disorder

and virtually no propensity to adopt stable secondary

structure in the absence of binding partners.

We illustrate the results obtained by MERA for four

representative residues: A19, located at the end of a stretch

of three Ala residues; N65, a residue type that has a known

higher propensity for adopting aL backbone torsion angles,

and a sequential pair of residues in the highly acidic

C-terminal tail of the protein, Y133 and Q134.

When only using chemical shift data as input to MERA,

the resulting v2 values are very low (blue dots in bottom

panels of Fig. 4) but the Ramachandran distributions show

relatively large deviations from the coil distribution (top

panels), as exemplified by Q134 which shows a substantial

aL-population. The absence of a significant increase in v2

when h is increased strongly indicates that these chemical-

shift-only calculations are overfitted, and that the coil

database populations are actually in good agreement with

the chemical shifts.

Remarkably, when all 12 experimental input parameters

are used for each residue, the normalized v2 values remain

low, but more ‘‘reasonable’’ deviations from the coil

Fig. 4 Examples of //w distributions derived for several a-synuclein

residues: A A19; B N65, C Y133; D Q134. For each residue, the

populations are shown when using chemical shift values (15N, 13Ca,

and 13C0) only (upper panels) and when using all available 12

parameters (3JHNHa, 3JC0C0, 3JC0Ha, 1JCaHa, 2JNCa, 1JNCa, d15N, d13Ca,

d13C0, dHNHa(i, i), dHaHN (i - 1, i) and dHNHN (i, i ? 1)) for each

residue (middle panels). h = 0.4 was used for the distributions shown,

with all r(q) values set to their default (Table 1, IDP) values and

using a diffusion anisotropy parameter k = 1.0. The plots of v2 versus

S (lower panels) are displayed for h values of (left to right) 0, 0.1, 0.2,

0.4, 0.8, 1.6, 3, 6, and 10, showing that on average slightly lower v2

values and higher S values are obtained when using the new coil

database (red symbols) than when using the Fitzkee coil library

(black) when fitting all 12 experimental parameters for each residue.

Blue dots in the lower panel correspond to the S and v2 values

obtained when using only chemical shift data as restraint inputs. The

horizontal error bars in the lower panels reflect the lack of

convergence of the simulated annealing protocol for very low h
values
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distributions are observed (center panels in Fig. 4). For

example, the aL-population for Q134 virtually disappears,

and A19 converges on the aR and PPII regions, as expected

for an Ala preceded by two other Ala residues. For all four

residues, the backbone angles are much closer to the coil

database distribution than for the above GB3 examples.

This result is also reflected in Kullback–Leibler diver-

gences (S) in the 0.1–0.5 range, versus 0.5–1.5 for the GB3

residues.

For most residues in a-synuclein, the S values are lower

when using the newly developed coil database (red dots in

the lower panels of Fig. 4) than when using the original

Fitzkee coil library (black dots). Residue A19 is a minor

exception to this rule, and shows a structural preference

that matches slightly better to the Fitzkee library. For the

vast majority of residues, however, the new coil library

results in lower Kullback–Leibler divergences by amounts

that fall somewhere between what is seen for residues

Y133 and Q134.

Concluding remarks

The MERA program provides a convenient avenue for

visualizing the distribution of backbone torsion angles

compatible with NMR data. It is applicable to fully disor-

dered proteins, as well as to dynamic regions in ordered

proteins. It is important to realize, however, that the pro-

gram will find the broadest possible distribution of back-

bone torsion angles that is consistent with the experimental

data. Typically, therefore, when fewer experimental input

parameters are provided this will result in wider distribu-

tions of backbone torsion angles. Care should therefore be

exercised not to overinterpret the distributions obtained by

MERA as evidence for actual dynamics. On the other hand,

when clear indications for dynamics are available from

other sources, such as 15N or 13C relaxation experiments,

MERA analysis can actually provide some insights into the

type of motions that take place. For example, residue L12 in

GB3 samples a broad distribution of //w angles, all located

in the b/PPII region of Ramachandran space (Fig. 3A). By

contrast, motion of loop residue D40 appears to involve

primarily its w angle, with / remaining close to ca -140�.
The experimental input parameters used by MERA also

depend on factors other than //w, which are neglected in

our analysis. For example, valence angle distortions and

H-bonding impact both J couplings and chemical shifts.

These additional factors tend to be significant in well

ordered regions of a protein but their effects, which can be

positive or negative, will average and therefore be smaller

in disordered regions. This typically causes attainable v2

values in dynamically disordered regions of a protein to be

much lower than for highly ordered residues. Therefore,

considerably lower v2 values are commonly obtained for

IDPs (Fig. 4). Future work is needed to develop a better

quantitative understanding of the effect of H-bonding and

valence angles on J couplings and chemical shifts. Overall,

the present procedure and its future refinements hold the

potential to greatly enhance the structural and dynamic

detail that can be extracted from the experimental data.
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